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1. INTRODUCTION

Localized deformation tends to occur in materials whenever a mechanism
develops that permits strain softening. The most familiar example is neck-
ing in a ductile tension specimen where the required mechanism is area
reduction in the cross section. An adiabatic shear band can form in a duc-
tile material when thermal softening, due to heat generated by plastic
deformation, is stronger than strain hardening, strain rate hardening, and
all other hardening mechanisms combined. The basic phenomenon was pointed

out by Zener and Holloman 1 and in recent years there has been substantial
renewed interest in an analytical treatment. A general result found by

several authors (e.g., Rubin and Drucker, 2 Clifton,3 Clifton, et al. 4Bai, 5

Burns 6 is that localization cannot begin until the stress in the corres-
ponding homogeneous deformation passes a maximum. It has also been
observed that the predicted subsequent rate of growth of inhomogeneities is
insufficient to explain observed dynamic stress-strain curves, even though
the predicted strain at peak homogeneous stress may be quite accurate.

In a series of papers Wright and Ba tra 7 8 9 considered the problem of
shear band formation around a small initial perturbation in one dimension
by performing a fully nonlinear finite element calculation. They found
that although the fields for both temperature and strain rate did begin to
localize slowly near the stress maximum, the calculated stress, which
remained nearly constant in space, followed the homogeneous stress for some
time after peak stress, and then dropped rapidly. Furthermore, the local-
ization in both temperature and strain rate accelerated sharply as stress
collapse began and the time of collapse depended on the size of the initial
perturbation. These results are summarized pictorially in Figure 1.

Unfortunately, the calculation became unstable just as the stress drop
was getting underway so that the validity of the result remained in doubt,
and the full morphology of the completed band could not be calculated. In

other fully nonlinear calculations, Clifton, et al. 4 did not continue far

enough to observe the stress drop, but Merzer 10 did in one example,
although the constitutive equations used in the latter case were quite dif-

ferent from those used by Wright and Batra. 7 8 9 Thus there seemed to be
evidence that the two stage process of localization is quite general.

In most cases the loss of strength is of much greater significance than
the mere fact of localization in the deformation or temperature. Further-
more, in dynamical problems the timing of events is usually crucial.
Therefore, in many applications it is important to understand the transi-
tional nature of localization in far greater detail than heretofore.

In this paper, so that mathematical details will be as transparent as
possible without obscuring the physical phenomena, a minimalist version of
thermo/visco/plasticity is used to formulate a localization problem. Both
the unsteady homogeneous solution and the first or dg er Urbation solution
for arbitrary initial conditions can then be found explicitly. The analy-
sis shows that the stress perturbation does not grot to first order, even
though the temperature and strain rate perturbations grow exponentially. A
byproduct of the perturbation solution is a criterion for absolute stabil-
ity, which also yields the least plastic strain rate at which shear bands

9
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can form. A new numerical anaysis, which is stable through all the rapid
transition regions, confirms the accuracy of the perturbation solution at
early times as well as the accuracy of the stability criterion. Further-
more, it is demonstrated that there is a rapid transition region where the
stress drops sharply, and for the first time, a stable calculation has been
made that fully resolves all the spatial details of the localization and
that also follows the process all the way to the terminal configuration.
At the end of the calculation the plastic strain rate has reached a plateau
in the center of the band, and, in fact, its spatial distribution has
become completely independent of time. A previous steady analysis,

Wright, 1 1 predicts this distribution with great accuracy, so that the pre-
sent calculation confirms the previous conjecture that the steady solutions
represent the core of a shear band as a central boundary layer. A new
quasi-steady analysis also gives the terminal configuration for plastic
strain rate, but now it is completely determined for a given material once
the applied strain rate is specified, and it is totally independent of the
nature of the initial perturbation.

Thus, many details concerning the formation of adiabatic shear bands
have been fully explained, with analysis and computation in complete agree-
ment with each oher, at least for the constitutive relations used here.
One aspect of localization, which is crucial for dynamical problems,
remains obscure, namely, a full understanding of the timing of the abrupt
collapse in stress. Parametric calculations with a triangular initial
perturbation indicate that the time of collapse depends strongly on the
area of the triangle, but only weakly on the slope of the sides. These
results seem to be in accord with expectations based on the stability
criterion, but an asymptotic analysis that predicts the time of collapse
remains elusive.

2. FORMULATION OF PROBLEM AND HOMOGENEOUS SOLUTIONS

The problem to be studied is simple shear of a finite slab of incom-
pressible material, which is further assumed to be rigid/perfectly plastic
in slow isothermal deformation, to be rate dependent, and to soften with
increasing temperature. The boundaries will be prescribed to be thermally
insulated and to move at constant velocity. Heat conduction and heat gen-
eration due to plastic work will be taken into account, and the initial
conditions will be assumed to be nearly uniform in temperature and plastic
strain rate.

With the X material coordinate taken parallel to the boundary and in
the direction of shearing, and with the Y material coordinate taken per-
pendicular to the boundary, the motion may be written as

x =X + u(Y,t) , y =Y , = Z )

where u is displacement and t is time. In nondimensional form, with
-1 < Y < +1 and 0 < t < -, the governing balance and constitutive equations
are given by



Momentum: s,y = pv~ t

Energy: e t  = ke,yy + sv,y (2)

Flow Law: s = (1 - a0)(1 + by,y)m .

In these equations the dependent variables are the shear stress s,
velocity v = u,t and temperature 0, which is assumed to be measured from a
convenient reference temperature. Commas denote partial differentiation
with respect to the independent variable indicated. The material parame-ters p, k, a, b, and m are nondimensional constants, and stand respectively
for nondimensional density, thermal conductivity, thermal softening coeffi-
cient, characteristic time in the Litonski flow law, and the rate hardening
exponent. The relationships between the nondimensional and dimensional
(barred) quantities are as follows.

y :y/H , t:ot , : /K , v = /H o  , 0= pCO/K

H -
2 2 k k/pcH 2

°  a = K/pc, b : job

Here H is the slab half thickness, io is the average applied strain rate, K

is the isothermal slow flow stress, and c is the heat capacity.

Since the material has been assumed to be rigid/plastic, there is no
elastic component of deformation, and the velocity gradient is equal to the
plastic strain rate. In (2.2) the term svy represents plastic work, which

is assumed to be converted completely to heat. Equation (2.3) is simply an
assumed flow law which exhibits the properties of thermal softening and
rate hardening, and which also has a nonzero yield stress when the strain
rate vanishes. Boundary conditions are v(+1,t) : +1 and O,y (+1,t) : 0.

Initial conditions are 0(y,O) = 00(y) prescribed, with compatible values

for v, y and s = constant determined from the formulas

s= 1 - a 1/rn b)m [= 0+W, y [b 1 a 0 ) 1 / m - 51] [ f , ( 1 - a ) 1 /

The first follows from the flow law (2.3), and the second follows by inte-
grating the first and taking account of the boundary condition on v.

When 0 o(y) = 0 identically, equations (2) have the following simple

homogeneous solutions,

v : y , s: Le-Ft 0 -- (0 - e - F t ) , (4)a a

where F = a(1 + b)m. This solution is shown in Figure 2. At the initial
time, when the motion is started and the temperature is zero everywhere,
the stress jumps up due to the rate effect. Thereafter, it decays exponen-
tially toward zero, and the temperature grows exponentially toward 1/a.

12
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Since the average or nominal strain rate in nondimensional terms is 1, non-
dimensional time and strain are numerically equal, so the material strain
softens right from the start. It is this softening that presents the
opportunity for localization.

Of far greater interest than the simple homogeneous solution are pro-
blems where the initial conditions are not quite uniform. In the next two
sections the initial temperature will be assumed to be symmetric in y and
given by

0 (y) 0 (y), where fo (y)dy 1 (5)

That is to say, the initial temperature is nearly zero (i.e., equal to the
reference temperature), and its average defines a small positive parameter
. Furthermore, temperature and stress will be symmetric and velocity

antisymmetric in y at all times, so the problem, including the boundary
conditions, is redefined in the obvious way on the interval 0 < y < 1.

3. NUMERICAL SOLUTIONS
789

Previous numerical solutions, Wright and Batra, were subject to
numerical instability as localization became extreme, so a modified
approach was taken here. First the equations were cast into weak form and
discretized spatially by a symmetric Galerkin method, as previously, but
now the grid was divided into equal segments on a logarithmic scale, so as
to crowd a large number of nodes into the center of the band, where the
appropriate number was found by trial and error. Piecewise linear global
basis functions were used to interpolate the velocity and temperature
fields (the fundamental unknowns) as well as the corresponding test func-
tions. After performing the required integrations, the equations have the
form

M6 = f(u)

where M is a combined mass/heat capacity matrix and u is the vector of
nodal velocities and temperatures. Since the matrix M is positive defi-
nite, banded, and diagonally dominant, its inverse is strongly diagonally

dominant, so that, after multiplying through by M - , a banded approximation
of the Jacobian of the new right hand side may be used. This fact is use-
ful in reducing storage requirements and evaluation time for the Jacobian
matrix. The problem has now been reduced to an initial value problem for
a finite system of coupled nonlinear ordinary differential equations. The
boundary conditions, of course, are implied by the weak form of the equa-
tions together with the correct choice of test functions. Time integration
was performed by the method of lines, that is, simply using one of the many
efficient algorithms in existence for the solution of systems of ODE's.

12
The one used here was Gear's stiff method, as implemented in the standard

IMSL FORTRAN library.
13
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For the initial conditions 0 (y) = 0.1 (1 - y ) e- , typical

results are illustrated in Figures 3-5, which show the solution surfaces

14
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Shear Localizatioru

o= 5.000(1° 
2)/S

6"

"1

Figure 3. Solution surface for temperature as a function of position
and nominal strain (time). TIhe logarithmic scale in y
is used to resolve the severe localization.
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Shear Localization
= 500(10~02)/s

00

Figure 4. Solution surface for strain rate as a function of position

and nominal strain (time). The logarithmic scale in y

is used to resolve the severe localization.
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Shear V calihzaion

S= 5.000(10 )/s

1"

oo

Figure 5. Solution surface for stress as a function of position and
nominal strain (time). Stress is very uniform in y.
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for temperature, plastic strain rate, and stress for a nominal strain rate
-1

of j = 500 s- . The nondimensional parameters in (3) were taken to be

P= 3.93x10 5 , k =0.0022, a = 0.104, m = 0.0251, and b =5x10 6for this
calculation. On the scale shown, the initial perturbation is scarcely
Visible, and although the perturbation grows right from the start, severe
localization is considerably delayed, and the stress follows nearly the
same early history as if there were no perturbation at all. Eventually
severe localization does occur with the temperature increasing sharply in
the center of the band, the plastic strain rate rising nearly instantane-
ously in the center, and the stress falling markedly. At the edges of the
band the plastic strain rate falls to zero and the temperature becomes
essentially constant, although at very long times the edge temperature will
rise some more due to the insulated boundary and heat conduction from the
center. After the rapid transition period, the temperature continues to
rise in the center and the stress continues to fall, but at a much reduced
rate. However, the plastic strain rate reaches a saturation profile and
becomes completely independent of time. Note also that the stress is
nearly constant in y at all times.

Other runs have been made at nominal strain rates of 5, 50, 5000, and

50000 s- , but with the same initial conditions as previously. At these
rates the nondimensional parameters change from their previous values
according to the scalings given by (3), and in each case the results remain
qualitatively the same, but with some significant differences, which are
summarized in Figures 6-8. At the lower rates Figure 6 shows that thermal
diffusion broadens and softens the rapid transition region, as measured by
the rise time for transition. Figure 7 shows that as the rate increases
the saturation profile becomes much narrower and taller. These results
were computed for particular initial conditions, but the saturation profile
actually is completely independent of tie initial conditions and depends
only on the nominal strain rate. This will be demonstrated analytically in
a later section. Figure 8 shows the critical strain for extreme localiza-
tion. Although the patterns shown in the previous two figures may not seem
too surprising, Figure 8 does not follow readily in any obvic'is way.
Finally, at the highest rates, the stress profile is no longer nearly uni-
form in y for all times, but during the rapid transition, it drops first in
the center and later at the Outside. This is a wave propagation effect due
to the fact that the nondimensional density scales as the square of the
applied strain rate in (3). At the highest rate the density has become
comparable to 1 so the inertia term is no longer insignificant.

4. REGULAR PERTURBATION SOLUTIONS AT EARLY TIMES

The early growth of a small nonuniformity can be easily understood by
means of a regular perturbation analysis, where the perturbation is taken
with respect to the homogeneous solution in (4). That is, the response
functions s, 6, v will be written as

3 = 3H + + + +v =V H +tv +.. (6)

where the subscript H refers to the homogeneous solution (4), and tis a
small parameter defined by the initial temperature distribution as in (5).

18
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Advantage will also be taken of the numerical result that the stress is
uniform in y to a high degree of approximation unless the nominal strain
rate is very large. The equations of first variation (written without the
tildes) become

5, = 0Y

a ert + e rt (7)y m r +-

e't  kI yy + 1

where i = m b
1 +b

Clearly these equations lose validity for large times, but here the
interest is only in small times. Boundary and initial conditions are given
by

B.C.; v(O,t) = v(1,t) = 0 and Oty(Ot) = ey(1,t) = 0.

I.C.; e(y,0) = ip(y)

with initial values for v,y and s compatible through use of (7.2) above

and (8) below. From (7.1) s = S(t), and by integrating
(7.2) we have

,1

S(t) =- FO(y,t) dy. (8)

With this result in (7.3) and by integrating again we have

dtJ e(y,t)dy - 0(y,t)dy.

Thus the perturbation in stress is related to the perturbation in mean tem-

perature by (8) and is given by

S(t) = - r e-rt. (9)

Equation (7.3) now becomes

f 1 + e-Pt. (10)0,t :ke,yy + e -P T

With the decomposition 0 e • t / ' /p(Yt) + 0(t) ! , (10) may be split into
two simpler equations,

k ' yy and - 1 + m e- (11)= M

22
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The appropriate choices for initial conditions are (y,O) = '0(y) and

c(O) = 0, and the boundary conditions for are ', y(Ot) = ',y(1,t) = 0.

The final result is a solution of (2), which is exact to first order in c.
F~ -Ft
-- (1 - aE) e + 0(E 2 )

a

I - (1 -aE:)e - [ 1t + cem  ( - 1) + O(2 )  (12)
a 2

a em  O(2)
V, 1 + m (6 = 1) + O(E

The perturbation and finite element solutions are compared in Figure
9a-9e, which show the temperature, plastic strain rate, and stress near the
center of the band, as computed by the two methods. Initially the results
coincide because of the choice of initial conditions, of course. In the
example shown, c = 0.02327, and the perturbation solution remains reason-
ably close to the finite element solution until yp = 0.15 or so (for other

values of y the two solutions are even closer), but eventually the two
diverge widely.

Note that the first term in each expression in (12) describes the
behavior of the spatial mean for that field variable, and that it behaves
exactly as the homogeneous solution would if the initial temperature were 6
rather than 0. The function P has a spatial mean of 1 for all time and
evolves from its initial values toward the constant value of 1 according to
simple heat diffusion in a slab with insulated boundaries. The variations
from the mean of temperature and strain rate depend on ' - 1 with a simple
exponential amplification, but the stress to order e is completely unaf-
fected by the nonuniformity in the other field variables. The very strik-
ing result is that although the simple perturbation approach, previously
used by many other workers in considering stability of similar problems

(e.g., Clifton, 3 Burns, 6 Bai, 5 predicts the correct initial growth of per-
turbations after peak homogeneous stress, it completely fails to predict
anything at all about the later explosive growth in temperature and plastic
strain rate and the simultaneous collapse of the stress.

Results so far may be summarized as follows. Numerical computation
shows that band formation is a multi-stage process. In the first stage,
described by the simple perturbation analysis, there is slow growth only.

(When the rapid change occurs, the term ce rt /  is still much less than
one.) Subsequently there is an extremely rapid transition, during which
almost all of the localization occurs, followed by a late, quasi-steady
stage, which will be described in a later section.

5. AN ABSOLUTE STABILITY CRITERION

Although no perturbation analysis to date sheds any light on the tim-

ing and structure of the rapid transition, the simple analysis does give an
absolute stability criterion that determines conditions under which pertur-
bations decay right from the start. In (12.2) and (12.3) growth occurs

23
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because of the positive exponential term, but if heat production from plas-

tic work is not too strong relative to heat concuction, then no growth
will occur, even though stress decreases with strain. This may be seen by
considering the Fourier components of 1 - in (12),

-Z ae n e cos nfy, where a= - (n)2k.

n=1

This expression satisfies (11.1), together with its boundary conditions,
and the coefficients a are to be chosen so as to match the initial condi-n

tions. Clearly the nth components of e and v, y in (12) will decay provided

= < k n2 T
m

In dimensional terms, the criterion for decay of the nth Fourier component
is

KaH2 1+m < mk6(n2 (13)
0

Thus, all Fourier components above a certain threshold decay; increases in
strength, thermal softening, slab thickness, or nominal strain rate all
tend to be destabilizing; and an increase in thermal conductivity tends to
be stabilizing. The influence of the two parameters m and b for rate hard-
ening is not quite so readily apparent, since each appears on both sides of
the inequality. It turns out that increases in either parameter may be
stabilizing or destabilizing depending on relative values of bio and m. To

see this, suppose that equality holds in (13), and by differenti ng,
determine which way the inequality will turn for small increases 1,. b or m.
The results are as follows.

If equality holds in (13), then with all other quantities held
constant,

an increase in b is stabilizing if b , and
0 M(14)

an increase in m is stabilizing if ln(1 + bo) <0 m

If the inequalities in (14) are reversed, then increases are destabilizing.
For the numerical values used in this paper, an increase in m is stabiliz-
ing, but surprisingly enough, an increase in b is destabilizing.

With n = 1 the inequality (13) gives an absolute stability criterion
which may be used to find the threshold value of Y below which all Fourier-1

components decay. In this paper the threshold is 2.06 s , which has been
confirmed numerically by running cases just below and just above this

-1
value. At 2.05 s the temperature distribution eventually becomes essen-
tially uniform and the plastic strain rate becomes nearly 1 everywhere. At

-1
2.075 s a steady, but nonuniform, profile of plastic strain rate even-
tually forms at large times.
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6. LATE STAGE MORPHOLOGY

As remarked previously, the numerical results indicate that after the
rapid transJiion to a completely localized deformation pattern, the plastic
strain rat- seems to be independent of time. Therefore, let it be assumed
that v, y p(y), and since v is constant on the boundaries, we have v,t = 0
and Sy 0 . Thus it follows from the flow law (2.3) that the temperature

may be written in the separable form

(1- aO) = S(t) h(y) (15)

where s = S(t) and h(y) = 1/[l + bp(y))m , or for other rate factors f(v, )
in the flow law, h(y) = 1/f(p). With (15) substituted into the energy
equation (2.2), then after dividing through by S(t)h(y) and using the usual
separation argument, independent equations for S(t) and h(y) are derived.

+ (is 0(16)

khyy + c h af (-)

where c is a separation constant, and for the rate factor used in this

paper f-1(1/h) = b-1(h-I/m - 1). The solution to (16.1) is

-ct{t-t o )

S = Soe (17)

where S is the stress level at t = to, and a first integral to (16.2) may

be written

h, 2 2af- 1 (1/h) - oh] dh = F(h;h(O),a), (18)
y k jh(o)

where the function F is defined by (18), and the parametric dependence of F
on h(O) and a is indicated explicitly. At y = 0, h = h(O), so the condi-
tion h,y (0) = 0 is satisfied (vanishing temperature gradient in the center

of the band due to symmetry). After taking the positive square root in
(18), the solution for h follows by quadrature, but it is still necessary
to determine the parmeters a and h(O). These must be chosen so as to meet
the required boundary conditions at y = 1, which in effect defines a non-
linear eigenvalue problem. The required conditions are

h, (1) = 0, and v(1) = 1.

In terms of the function F, these may be written

F(h(1);h(O),a) = 0

f v o, n(1) f-I (/h) dh (19)

0h(o) IF(h)
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In addition, to ensure that hy), as determined by the quadrature, actually

takes on the value h(1) when y = 1, it is necessary to have

dy = = 1 
(20)

Equations (19.1), (19.2), and (20) are to be solved for h(O), h(1), and a.
It does not seem possible to state unequivocally that these three equations
always have a solution, but when they do, as numerical experience to date
has always indicated, integration of (18) yields y as a function of h. It
usually happens that an unloading boundary appears somewhere in the problem

where h = 1 and f-l(1/h) = v,y = 0. Since f is only defined for v, y > 0

and only takes on values of 1 or greater, f-1 (1/h) is directly defined only
for 0 < h < 1. However, the unloading cases can be included without modi-

fication in the preceding framework simply by extending the function f-1 to

be defined by f-1(1/h) = 0 if h > 1. The net result is that for fixed
values of the nondimensional parameters p, k, a, b, and m, there is a defi-
nite quasi-steady end state with a fixed distribution of plastic strain
rate. In particular, the end state is absolutely independent of the ini-
tial conditions. This result has also been amply demonstrated by numerical
experimentation.

The quasi-steady result above may seem somewhat special because the
separation property required to obtain (16) depends entirely on the linear
dependence of stress on temperature in the assumed flow law (2.3). There
is strong evidence, however, that a similar, if slightly weaker, result
will hold in more general cases. If v,t and O,t are set equal to zero in

(2.1) and (2.2), then solutions to the resulting equations are steady solu-
tions for the full set. Properties of such steady solutions have been des-

11
cribed in a recent paper. In general, there is a two parameter family of
solutions which meet the required boundary conditions at y = 0, but which
cannot be made to meet the boundary conditions at y = 1 except in very
unusual circumstances. (This is in contrast to the quasi-steady solutions
above which do meet all required boundary conditions.) The steady solu-
tions would then seem to represent the center of the fully developed shear
bend as a boundary layer where the two defining paramters may be "slowly
varying" in some sense. In a more general case than cons iered here, sup-
pose the flow law is s = g(ov, y) where g increases monotonically with v,Y'

Then the plastic strain rate may be written v,y = p(r ;s), where s is con-

stant in a steady solution, and the temperature and velocity distributions
are found from

1 2 cp ( ° ;s ) d

y

(21)

v s (t);s) d _
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In (21.1) 0cis the temperature in the center of the band, and the negative

square root is to be taken to find 0, The two parameters in (21) that

explicitly define which solution is to be considered are s and jct but

these could be expressed in terms of many other parameters, such as the
plastic strain rate in the center of the band or the limiting values of v
and 6, ygiven by (21) at large values of y. Figure 10 shows how well the

solution given by (21) matches the numerical solution when the temperature
and plastic strain rate in the center of the band, as found numerically,
are used as the defining parameters. Such excellent agreement in the core
of the band is only possible after the rapid transition region, of course.

7. NUMERICAL EXPERIMENTS ON TDHE TIME OF STRESS COLLAPSE

Analysis has given very satisfactory descriptions of the early and late
time morphology of a shear band, but has not yet given an adequate descrip-
tion of either the timing or the structure of the transition between the
two. Consequently, a series of numerical runs was made in which the magni-
tude and shape of the initial temperature distribution were varied in a
simple way, and the time to severe localization was computed. All these
calculations were made for a nominal strain rate of j 500 s- . The ini-

tial temperature distribution was taken to be triangular with a peak tem-
perature at y =0, where 0 < 0 (0) < 1/a. The temperature decreased lin-

0

early in y with negative slope K, and reached 0 at a value of y between 0
and 1. The magnitude of the perturbation is then measured by the area of
the triangle E:, as in the linearized perturbation analysis, and the shape
is measured by the slope K, a small value of K indicating a flat, spread
out shaped and a high value indicating a sharply peaked shape.

Figure 11 shows the nominal strain achieved at severe localization as a
function of c when K is held constant, and Figure 12 shows the strain at
severe localizataion as a function of K when c is held constant. The two
solid dots on the curves in Figure 11 correspond to the two solid dots in
Figure 12. Although these curves certainly do not give the whole variation
in response as magnitude and shape are varied, they are highly suggestive.
At small magnitudes in Figure 11 the localization strain varies slowly at a
low negative power of amplitude and is independent of the value of K. How-
ever, for the larger E:, the strain decreases rapidly over several orders of
magnitude for relatively modest changes in cif the slope is large, but
changes scarcely at all if the slope is small. On the other hand, Figure
12 shows that the strain to localization is a relatively weak function of
shape for small amplitudes, but Figure 11 indicates that it must be a far
stronger function of shape for larger amplitudes. When the initial shape
is very flat and K is small, Figure 12 shows that the strain at severe
localization appears to approach a function that decreases linearly with
the logarithm of slope, which would indicate that the strain tends to
infinity as the slope tends to zero. That is to say, a perfectly flat or
constant initial temperature distribution does not localize. For larger
values of K, where the profile is sharply peaked in the center, heat con-
duction and inertia very rapidly smooth out the distribution to make it

**~~* .- .. .. .* . ......... . . .
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broad and flat, and then early growth and later severe localization follow
in much the same pattern for all K varying over three decades or more.

8. DISCUSSION AND CONCLUSIONS

Adiabatic shear band formation is a major damage mechanism in ductile
materials that undergo rapid deformation processes such as those that occur
in machining, cutting, and forming operations, as well as during impact and
penetration. The damage may occur locally along a plane, as in cutting or
punching, or it may appear in a more or less distributed fashion, as in
penetration, but in any case, it results in a reduction of shearing forces
that can be transmitted through the material and ultimately in total fail-
ure. In this paper, the intent has been to clarify the dynamics of adia-
batic shear band formation by studying a model that is simple enough for
clarity, but that still represents the essential physics.

Even though the model is simple, it still requires five nondimensional
constants, three of which contain the noiminal or applied strain rate, ; of

and two of which contain the characteristic external length, H. In addi-
tion, the size and form of the perturbation introduces other parameters.
From the mathematical point of view, it is generally most useful to examine
influences on the solution due to variation of one nondimensional parameter
at a time, but often such variation is not physically realizable, as in the
present case. Here the primary variation studied was in the nominal strain
rate, j0, which enters into the nondimensional density, diffusivity, and

one of the rate constants. However, for most of the cases analyzed,
neither the density, which is extremely small, nor the rate constant, b,
which is extremely large, have any appreciable effect on the major features
of the solution. Thus, apart from a few calculations with limited varia-
tions of the size and form of the perturbation, the principal effects
studied may be regarded as due to variation of the nondimensional diffusiv-
ity, k. The influence of the other parameters remains to be studied.
Experience to date indicates that m and a will most likely have substantial
influence on the timing of severe localization.

All results presented in this paper have assumed insulated boundaries.
A few calculations were also made with the boundaries assumed to be held at
constant temperature. The results differed scarcely at all from those pre-
sented above, except at points very close to the boundary where there was a
rapid transition from a region of uniform temperature, whose value was
virtually the same as that reached at the insulated boundary at an identi-
cal time. Thus, in this case, two boundary layers develop, one at the
outer boundary and one in the center of the shear band. Of course, if the
external dimension, H, is small enough, the two layers will overi-jp and
interfere with each other, but that is another problem riot considered here.

The numerical and asymptotic analyses in this paper show clearly that
the early growth of a perturbation is only a precursor to intense localiza-
tion, which occurs somewhat later. This is the single most important con-
clusion, which had been suggested by earlier calculations, but which here
is definitive. The delay seems to be strongly affe'~ed by viscous
stresses, perhaps in a manner analogous to that which occurs in viSCOUs

necking, as de~scribed by Hu~tchinson arid Neaje 14
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